PENGEMBANGAN METODE PENGUKURAN PAPARAN MEDAN ELEKTROMAGNETIK PADA INKUBATOR BAYI
Abstract
Pengujian kompatibilitas elektromagnetik pada inkubator bayi berdasarkan standar CISPR 11 merupakan pengukuran medan elektromagnetik secara Far Field. Metode pengukuran berdasar CISPR 11 tersebut belum menggambarkan besaran paparan elektromagnetik yang diterima oleh bayi pada jarak dekat. Penelitian ini dilakukan sebagai pengembangan metode CISPR 11 pada pengukuran medan elektrik dengan melakukan pemetaan sebaran medan elektrik. Metode penelitian yang digunakan adalah metode ekperimen dengan menggunakan teknik pusposive sampling dalam pemilihan inkubator bayi. Radiasi elektromagnetik inkubator diukur berdasarkan standar pengujian CISPR 11 dan dilakukan pengembangan metode pengukuran dengan melakukan pengukuran near field planar system untuk pemetaan medan elektromagnetik. Pemetaan tersebut digabungkan dengan gambar simulasi posisi bayi saat diletakkan di inkubator kemudian dianalisis perkiraan intensitas medan yang sampai pada bagian otak bayi. Dari sampel yang dipakai terdapat paparan medan elektromagnetik tertinggi di 3 frekuensi yaitu 121, 132, 221 MHz. Pola sebaran medan elektrik yang dihasilkan dari setiap frekuensi berbeda-beda dan masing-masing frekuensi memiliki area yang memiliki medan elektrik tertinggi yang berpotensi mempengaruhi bayi terutama organ vital yang berada pada area tersebut. Metode pemetaan ini dapat digunakan sebagai pengembangan metode pengukuran radiasi elektromagnetik pada inkubator bayi, terutama untuk mengetahui sebaran medan elektrik diatas permukaan matras inkubator.
Keywords
Full Text:
PDFReferences
Bellieni, C. V., Acampa, M., Maffei, M., Maffei, S., Perrone, S., Pinto, I., ... & Buonocore, G. (2008). Electromagnetic fields produced by incubators influence heart rate variability in newborns. Archives of Disease in Childhood-Fetal and Neonatal Edition, 93(4), F298-F301.
doi:10.1136/adc.2007.132738
Bellieni, C. V., Nardi, V., Buonocore, G., Di Fabio, S., Pinto, I., & Verrotti, A. (2019). Electromagnetic fields in neonatal incubators: the reasons for an alert. The Journal of Maternal-Fetal & Neonatal Medicine, 32(4), 695-699.
doi:10.1080/14767058.2017. 1390559
Boopalan, P., Chittaranjan, S. B., Balamurugan, R., Nandakumar, N. S., Sabareeswaran, A., & Mohanty, M. (2009). Pulsed electromagnetic field (PEMF) treatment for fracture healing. Current Orthopaedic Practice, 20(4), 423-428.
doi:10.1097/BCO.0b013e318198e8b2
Calvente, I., Vázquez-Pérez, A., Fernández, M. F., Núñez, M. I., & Múñoz-Hoyos, A. (2017). Radiofrequency exposure in the Neonatal Medium Care Unit. Environmental Research, 152, 66-72.
doi:10.1016/j.envres.2016.09.019
Choi, Y. K., Urnukhsaikhan, E., Yoon, H. H., Seo, Y. K., Cho, H., Jeong, J. S., … Park, J. K. (2016). Combined effect of pulsed electromagnetic field and sound wave on in vitro and in vivo neural differentiation of human mesenchymal stem cells. Biotechnol. Prog. 33, 201–211.
doi:10.1002/btpr.2389.
CISPR 11. (2015). Industrial, scientific and medical equipment - Radio-frequency disturbance characteristics - Limits and methods of measurement.
Czyz, J., Guan, K., Zeng, Q., Nikolova, T., Meister, A., Schönborn, F., ... & Wobus, A. M. (2004). High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53‐deficient embryonic stem cells. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 25(4), 296-307.
doi:10.1002/bem.10199
Dove, I. (2014). Analysis of Radio Propagation Inside the Human Body for in-Body Localization Purposes. University of Twente.
Ferrara, F., Gennarelli, C., & Guerriero, R. (2016). Near-Field Antenna Measurement Techniques. In Z. N. Chen (Ed.), Handbook of Antenna Technologies. Singapore: Springer Reference
Franek, O., Sorensen, M., Ebert, H., & Pederson, G. F. (2012). Sampling Criterion for EMC Near Field Measurements. In PIERS Proceeding. Kuala Lumpur.
IARC. (2013) Non-ionizing Radiation, Part 2: Radiofrequency Electromagnetic Fields. vol.102.
ICNIRP. (1998). ICNIRP guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Physics, 74(4), 494–522.
IEC 60601-1-2. (2014). Medical electrical equipment-general requirements for safety-collateral standard: electromagnetic-compatibility-requirements and tests
Institute of Electrical and Electronics Engineers. (1992). IEEE C95. 1b: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz Amendment 2. Inc., New York, NY, 2004. doi:10.1109/IEEESTD.2006.99501
Jooyan, N., Goliaei, B., Bigdeli, B., Faraji-Dana, R., Zamani, A., ... & Mortazavi, S. M. J. (2019). Direct and indirect effects of exposure to 900 MHz GSM radiofrequency electromagnetic fields on CHO cell line: Evidence of bystander effect by non-ionizing radiation. Environmental research, 174, 176-187.
doi: 10.1016/j.envres.2019.03.063
Koyama, S., Narita, E., Shinohara, N., & Miyakoshi, J. (2014). Effect of an intermediate-frequency magnetic field of 23 kHz at 2 mT on chemotaxis and phagocytosis in neutrophil-like differentiated human HL-60 cells. International journal of environmental research and public health, 11(9), 9649-9659.
doi:10.3390/ijerph110909649
Lai, H. C., & Singh, N. P. (2010). Medical applications of electromagnetic fields. IOP Conference Series: Earth and Environmental Science, 10, 012006.
doi: 10.1088/17551315/10/1/012006
Kheifets, L., Repacholi, M., Saunders, R., & Van Deventer, E. (2005). The sensitivity of children to electromagnetic fields. Pediatrics, 116(2), e303-e313.
Lustenberger, C., Murbach, M., Dürr, R., Schmid, M. R.,
Kuster, N., … & Huber, R. (2013). Stimulation of the Brain With Radiofrequency Electromagnetic Field Pulses Affects Sleep-Dependent Performance Improvement. Brain Stimulation, 6 (5), 805-811.
doi:10.1016/j.brs.2013.01.017
Mali, B., Jarm, T., Corovic, S., Paulin-Kosir, M. S., Cemazar, … & Miklavcic, D. (2008). The effect of electroporation pulses on functioning of the heart. Medical & Biological Engineering & Computing, 46(8). doi:10.1007/s11517-008-0346-7
Markovà, E., Malmgren, L. O. G., & Belyaev, I. Y. (2010). Microwaves from Mobile Phones Inhibit 53BP1 Focus Formation in Human Stem Cells More Strongly Than in Differentiated Cells: Possible Mechanistic Link to Cancer Risk. Environmental Health Perspectives, 118(3), 394-399.
doi:10.1289/ehp.0900781
Migliore, M. D. (2018). Near Field Antenna Measurement Sampling Strategies : From Linear to Near Field Antenna Measurement Sampling Strategies : From Linear to Nonlinear Interpolation. Electronics, 7(10).
Morgan, Ll., Kesari, S., & Davis, D. (2014). Why children absorb more microwave radiation than adults: The consequences. Journal of Microscopy and Ultrastructure, 2(4), 197. doi:10.1016/j.jmau.2014.06.005
Shi, D., Zhu, C., Lu, R., Mao, S., & Qi, Y. (2014). Intermediate frequency magnetic field generated by a wireless power transmission device does not cause genotoxicity in vitro. Bioelectromagnetics, 35(7), 512-518.
doi:10.1002/bem.21872.
Wibowo, P. (2016). Menganalisis Potensi Gangguan Kesehatan dari Radiasi Medan Elektromagnetik Disekitar Gardu Listrik 20 kV-380/220V Mengacu pada IEEE Std C95.1. 11th Annual Meeting on Testing and Quality, 262–270.
Wibowo, P., & Sudrajat, M. I. (2017). Memetakan Sumber Interferensi dari Driver Inverter dengan Lebih Akurat Menggunakan Sniffer Probe Serta Kombinasi Contour Plot dan Foto Perangkat. 12th Annual Meeting on Testing and Quality, 263–268.
DOI: http://dx.doi.org/10.31153/js.v22i1.767
Refbacks
- There are currently no refbacks.