Jurnal Standardisasi

Notifications

Editorial Board

Reviewer

Journal Help

Font Size



Home Search Mail RSS


EVALUASI KETIDAKPASTIAN PENGUKURAN PENGUJIAN MEKANIS PADA BAJA TULANGAN BETON SIRIP SNI 2052:2017

Riki Efendi, Mislan Mislan

Abstract


Baja Tulangan Beton sebagai material penting yang digunakan untuk konstruksi di Indonesia membutuhkan ketelitian dalam penentuan spesifikasi mekanisnya sehingga perlu dilakukan evaluasi terhadap faktor-faktor yang mempengaruhi spesifikasi mekanis tersebut seperti ketidakpastian pengukuran. Penelitian ini mengevaluasi ketidakpastian pengukuran baja tulangan beton dengan parameter kuat luluh, kuat tarik, dan regangan sesuai SNI 2052:2017. Pengujian mekanis dilakukan berdasarkan SNI 8389:2017 menggunakan 10 sampel berukuran nominal 10 mm hingga 32 mm dan diuji di Laboratorium Pengujian PT Putra Baja Deli yang telah terakreditasi oleh Komite Akreditasi Nasional sesuai SNI ISO/IEC 17025:2017. Ketidakpastian pengukuran yang dievaluasi adalah ketidakpastian pengujian sampel, kalibrasi dan resolusi alat. Hasil evaluasi ketidakpastian pengukuran diperluas parameter kuat luluh dan kuat tarik bervariasi untuk setiap ukuran sampel, namun kuat tarik memiliki variasi yang lebih kecil dibandingkan kuat luluh. Nilai kontribusi ketidakpastian terbesar berasal dari ketidakpastian pengujian sampel. Pada parameter regangan, ketidakpastian diperluas menghasilkan nilai yang lebih kecil dari 1% dengan nilai kontribusi ketidakpastian terbesar diberikan oleh ketidakpastian pengujian panjang akhir sampel. Hasil evaluasi dapat menjadi informasi penting untuk kriteria keberterimaan dalam menentukan spesifikasi mekanis produk baja tulangan beton sirip dan evaluasi terkait dengan prosedur pengujian mekanis baja tulangan beton sirip.


Keywords


Baja Tulangan Beton Sirip, Ketidakpastian Pengukuran, SNI 2052:2017, pengujian mekanis

Full Text:

PDF

References


Abdel‐Fatah, H. T. M. (2010). ISO/IEC 17025 accreditation: between the desired gains and the reality. The Quality Assurance Journal, 13(1-2), 21-27.

Achamyeleh, T., Çamur, H., Savaş, M.A., & Evcil, A. (2022). Mechanical strength variability of deformed reinforcing steel bars for concrete structures in Ethiopia. Scientific Reports (12)1, 1-10. https://doi.org/10.1038/s41598-022-06654-1

Agresti, A., & Franklin, C. (2013). Statistics: The Art and Science of Learning from Data. Pearson.

Allen, E., & Iano, J (2009). Fundamentals of Building Construction (5th ed.). John Wiley & Sons, Inc.

American Concrete Institute. (2022). ACI CODE-318-19(22): Building Code Requirements for Structural Concrete and Commentary (Reapproved 2022). Farmington Hills, MI: American Concrete Institute.

Aravinna, A. P. (2021). Reinforcement Steel Estimation of Measurement Uncertainty in Determination of Tensile Strength of Reinforcement Steel Central Engineering Consultancy Bureau ( CECB ), Sri Lanka . (Issue February). https://doi.org/10.13140/RG.2.2.14541.77287

Australia Standards. (2020). Metallic materials - Tensile testing at ambient temperature (AS 1391:2020). Australia Standards

Badan Standardisasi Nasional. (2017a). Cara Uji Tarik Logam (SNI 8389:2017). Badan Standardisasi Nasional

Badan Standardisasi Nasional. (2017b). Baja Tulangan Beton (SNI 2052:2017). Badan Standardisasi Nasional

Badan Standardisasi Nasional (2018). Persyaratan umum kompetensi laboratorium pengujian dan kalibrasi (SNI ISO/IEC 17025:2017). BSN

Badan Standardisasi Nasional (2019). Beton Struktural untuk Bangunan Gedung dan Penjelasan (SNI 2847:2019). Badan Standardisasi Nasional

Daniyal, M., & Akhtar, S. (2020). Corrosion assessment and control techniques for reinforced concrete structures: a review. Journal of Building Pathology and Rehabilitation, 5(1), 1–20. https://doi.org/10.1007/s41024-019-0067-3

Dhoska, K., Lumi, D., Sulejmani, A., & Koça, O. (2022). Measurement uncertainty for mechanical resistance of manufactured steel bar. Pollack Periodica (17)2, 104-108. https://doi.org/10.1556/606.2022.00532

Djavanroodi, F., & Salman, A. (2017). Variability of Mechanical Properties and Weight for Reinforcing Bar Produced in Saudi Arabia. IOP Conference Series: Materials Science and Engineering (230)1, 012002. https://doi.org/10.1088/1757-899X/230/1/012002

Ede, A. N., Egunjobi, E. O., Bamigboye, G. O., & Ogundeji, J. (2015). Assessment of quality of steel reinforcing bars used in Lagos, Nigeria. International Research Journal of Innovative Engineering, 1(3), 1–8.

Ede, A. N., Akpabot, A. I., Olofinnade, O. M., & Oyeyemi, K. D. (2018). Forecasting the hazards of seismic induced building collapse in Lagos-Nigeria through quality of reinforcing steel bars. International Journal of Mechanical Engineering and Technology, 9(8), 766–775.

Faridah, D.N., Erawan, D., Sutriah, K., Hadi, A., & Budiantari, F. (2018). Implementasi SNI ISO/IEC 17025:2017 - Persyaratan Umum Kompetensi Laboratorium Pengujian dan Laboratorium Kalibrasi. Badan Standardisasi Nasional.

Firat, F. K. (2016). Mechanical Properties of Reinforcing Steel in R/C: Uncertainty Analysis and Proposal of a New Material Factor. Arabian Journal for Science and Engineering, 41(10), 4019–4028. https://doi.org/10.1007/s13369-016-2077-7

Hadi, A. (2018). Persyaratan Umum Kompetensi Laboratorium Pengujian & Laboratorium Kalibrasi. Jakarta: Penerbit PT Gramedia Pustaka Utama.

Hogan, R. (2017). How to find significant contributors to measurement uncertainty. https://www.isobudgets.com/significant-contributors-to-measurement-uncertainty/

International Laboratory Accreditation Cooperation. (2015). The ILAC Mutual Recognition Arrangement. https://ilac.org/?ddownload=891

Joint Committee for Guides in Metrology. (2008). Evaluation of measurement data — Guide to the expression of uncertainty in measurement (JCGM 100:2008 GUM 1995 with minor corrections). Joint Committee for Guides in Metrology.

Komite Akreditasi Nasional (n.d.). Direktori Klien Laboratorium Penguji (17). Diakses pada 30 Desember 2022, melalui http://kan.or.id/index.php/documents/terakreditasi/doc17020/sni-iso-iec-17025/laboratorium-penguji?layout=edit&id=186

Kumar, U., Prasad, A., Singh, S., & Kanjilal, P. (2022). Measurement of uncertainties in tensile test properties of Thermo-mechanically Treated (TMT) steel bars. Materials Today: Proceedings (67), 507-516. https://doi.org/10.1016/j.matpr.2022.06.473

Miguel, A., Moreiraa, R., & Oliveira, A. (2021). ISO/IEC 17025: History and introduction of concepts. Quimica Nova, (44)6, 792-796. https://doi.org/10.21577/0100-4042.20170726.

Suhartono, H., Rustianto, B. (2022). Estimating of measurement uncertainty of tensile strength test for deformed steel bars for concrete reinforcement. Proceeding of the 1St International Conference on Standardization and Metrology (Iconstam), (2664) Nov, 020006. https://doi.org/10.1063/5.0108791

Teddy Chandra, S. E., MM, P., & Priyono, M. M. (2023). Statistika Deskriptif. Malang: CV Literasi Nusantara Abadi.

Trivedi, A. S., Bhadoriya, A. S., & Sharma, M. (2018). A Review on Corrosion of Steel Reinforced in Cement Concrete. International Research Journal of Engineering and Technology (IRJET), 5(4), 2513–2516.

Undang-Undang No. 14 Tahun 2018 Tentang Pemberlakuan SNI Baja Tulangan Beton Secara Wajib (Indonesia). Diakses tanggal 26 Desember 2022 dari http://jdih.kemenperin.go.id/site/baca_peraturan/2398

Undang-Undang No. 20 Tahun 2014 Tentang Standardisasi dan Penilaian Kesesuaian (Indonesia). Diakses tanggal 26 Desember 2022 dari https://jdih.kemenparekraf.go.id/katalog-998-produk-hukum.




DOI: http://dx.doi.org/10.31153/js.v25i2.1001

Refbacks

  • There are currently no refbacks.